skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gabor, Rachel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coastal aquifers experience water table fluctuations that push and pull water and air through organic‐rich soils. This exchange affects the supply of oxygen, dissolved organic carbon (DOC), and nitrogen (N) to shallow aquifers and influences groundwater quality. To investigate the fate of N species, we used a meter‐long column containing a sequence of natural organic topsoil and aquifer sediments. A fluctuating head was imposed at the column bottom with local, nitrate‐rich groundwater (16.5 mg/L NO3‐N). We monitored in‐situ redox potential and collected pore water samples for analysis of inorganic N species and DOC over 16 days. Reactive processes were more complex than anticipated. The organic‐rich topsoil remained anaerobic, while mineral sediments beneath alternated between aerobic, when the water table dropped and sucked air across preferential flow paths, and anaerobic conditions, when the water table was high. A fluid flow and reactive transport model shows that when the water table rises into organic‐rich soils, it limits the flow of oxygen, while the soils release DOC, which stimulates the removal of nitrate from groundwater by denitrification. At the end of the experiment, we introduced seawater to the column to mimic a storm surge. Seawater mobilized N and DOC from shallow soil horizons, which could reach the aquifer if the surge is long enough. These processes are relevant for groundwater quality in developed coastal areas with anthropogenic N sources, as climate change and rising seas will drive changes in water table and flood dynamics. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract Many challenges remain before we can fully understand the multifaceted role that natural organic matter (NOM) plays in soil and aquatic systems. These challenges remain despite the considerable progress that has been made in understanding NOM’s properties and reactivity using the latest analytical techniques. For nearly 4 decades, the International Humic Substances Society (IHSS, which is a non-profit scientific society) has distributed standard substances that adhere to strict isolation protocols and reference materials that are collected in bulk and originate from clearly defined sites. These NOM standard and reference samples offer relatively uniform materials for designing experiments and developing new analytical methods. The protocols for isolating NOM, and humic and fulvic acid fractions of NOM utilize well-established preparative scale column chromatography and reverse osmosis methods. These standard and reference NOM samples are used by the international scientific community to study NOM across a range of disciplines from engineered to natural systems, thereby seeding the transfer of knowledge across research fields. Recently, powerful new analytical techniques used to characterize NOM have revealed complexities in its composition that transcend the “microbial” vs. “terrestrial” precursor paradigm. To continue to advance NOM research in the Anthropocene epoch, a workshop was convened to identify potential new sites for NOM samples that would encompass a range of sources and precursor materials and would be relevant for studying NOM’s role in mediating environmental and biogeochemical processes. We anticipate that expanding the portfolio of IHSS reference and standard NOM samples available to the research community will enable this diverse group of scientists and engineers to better understand the role that NOM plays globally under the influence of anthropogenic mediated changes. 
    more » « less
  3. Abstract In coastal rivers, tides facilitate surface water‐groundwater exchange and strongly coupled nitrification‐denitrification near the fluctuating water table. We used numerical fluid flow and reactive transport models to explore hydrogeologic and biogeochemical controls on nitrogen transport along an idealized tidal freshwater zone based on field observations from White Clay Creek, Delaware, USA. The capacity of the riparian aquifer to remove nitrate depends largely on nitrate transport rates, which initially increase with increasing tidal range but then decline as sediments become muddier and permeability decreases. Over the entire model reach, local nitrification provides a similar amount of nitrate as surface and groundwater contributions combined. More than half (~66%) of nitrate removed via denitrification is produced in situ, while the vast majority of remaining nitrate removed comes from groundwater sources. In contrast, average nitrate removal from surface water due to tidal pumping amounts to only ~1% of the average daily in‐channel riverine nitrate load or 1.77 kg of nitrate along the reach each day. As a result, tidal bank storage zones may not be major sinks for nitrate in coastal rivers but can act as effective sinks for groundwater nitrate. By extension, tidal bank storage zones provide a critical ecosystem service, reducing contributions of groundwater nitrate, which is often derived from septic tanks and fertilizers, to coastal rivers. 
    more » « less